Genetic disorders of renal phosphate transport.
نویسندگان
چکیده
منابع مشابه
The journey from vitamin D-resistant rickets to the regulation of renal phosphate transport.
In 1937, Fuller Albright first described two rare genetic disorders: Vitamin D resistant rickets and polyostotic fibrous dysplasia, now respectively known as X-linked hypophosphatemic rickets (XLH) and the McCune-Albright syndrome. Albright carefully characterized and meticulously analyzed one patient, W.M., with vitamin D-resistant rickets. Albright subsequently reported additional carefully p...
متن کاملKidney and Phosphate Metabolism
The serum phosphorus level is maintained through a complex interplay between intestinal absorption, exchange intracellular and bone storage pools, and renal tubular reabsorption. The kidney plays a major role in regulation of phosphorus homeostasis by renal tubular reabsorption. Type IIa and type IIc Na(+)/Pi transporters are important renal Na(+)-dependent inorganic phosphate (Pi) transporters...
متن کاملFanconi-Bickel syndrome and autosomal recessive proximal tubulopathy with hypercalciuria (ARPTH) are allelic variants caused by GLUT2 mutations.
CONTEXT Many inherited disorders of calcium and phosphate homeostasis are unexplained at the molecular level. OBJECTIVE The objective of the study was to identify the molecular basis of phosphate and calcium abnormalities in two unrelated, consanguineous families. PATIENTS The affected members in family 1 presented with rickets due to profound urinary phosphate-wasting and hypophosphatemic ...
متن کاملRegulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4.
Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that acts on the proximal tubule to decrease phosphate reabsorption and serum levels of 1,25-dihydroxyvitamin D₃ [1,25(OH)₂ Vitamin D₃]. Abnormal FGF23 metabolism has been implicated in several debilitating hypophosphatemic and hyperphosphatemic disorders. The renal receptors responsible for the phosphaturic actions of FGF23 have not...
متن کاملFull Review Genetic diseases of renal phosphate handling
UNLABELLED: Renal control of systemic phosphate homeostasis is critical as evident from inborn and acquired diseases causing renal phosphate wasting. At least three transport proteins are responsible for renal phosphate reabsorption: NAPI-IIa (SLC34A1), NAPI-IIc (SLC34A3) and PIT-2 (SLC20A2). These transporters are highly regulated by various cellular mechanisms and factors including acid-base ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New England journal of medicine
دوره 363 18 شماره
صفحات -
تاریخ انتشار 2010